Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Knee Surg Sports Traumatol Arthrosc ; 29(2): 417-421, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32277263

RESUMEN

PURPOSE: Traumatic lesions of articular cartilage represent a crucial risk factor for osteoarthritis. Even if several strategies exist to treat such damages, the optimal solution has not yet been found. A new strategy represents the scaffold-free spheroid-based autologous chondrocyte transplantation. In this method, spheroids of chondrocytes are synthesized after chondrocyte isolation and expansion, followed by the implantation in a second intervention. METHODS: Fine Jamshidi-needle biopsies from five patients (one from each patient, Ø 2 mm) treated with a spheroid-based autologous chondrocyte implantation (ACI) after traumatic lesions of the articular cartilage of the knee were analysed histologically and immunohistologically for collagen II, collagen X and aggrecan expression. The indication for a second look arthroscopy was given by arthrofibrosis or meniscus-lesions, respectively. The time between ACI and second-look arthroscopy ranged between 6 and 16 months. RESULTS: In all patients, the histological examinations revealed an avascular cartilage tissue with a homogenic extracellular matrix. The subchondral bone neither showed bleeding, necrosis nor hypertrophy. A homogenous alcian blue staining indicated high amounts of mucopolysaccharides and glycosaminoglycans. Collagen II staining was highly positive, whereas collagen X staining was negative in every patient, ruling out hypertrophic chondrocyte differentiation. In addition, intense aggrecan staining indicated a strong expression of this extracellular matrix component. CONCLUSION: The present case series represents the first histological and immunohistological analyses of spheroid-based ACI in humans. Spheroid-based ACI revealed excellent histological results regarding the regeneration of hyaline articular cartilage. These results indicate that spheroid based ACI is a promising strategy for treating traumatic lesions of the articular cartilage of the knee.


Asunto(s)
Enfermedades de los Cartílagos/cirugía , Cartílago Articular/cirugía , Condrocitos/trasplante , Articulación de la Rodilla/cirugía , Procedimientos Ortopédicos/métodos , Adulto , Agrecanos/metabolismo , Artroscopía/métodos , Cartílago Articular/patología , Condrocitos/patología , Colágeno/metabolismo , Femenino , Glicosaminoglicanos/metabolismo , Humanos , Inmunohistoquímica/métodos , Masculino , Persona de Mediana Edad , Segunda Cirugía , Trasplante Autólogo/métodos
2.
Materials (Basel) ; 13(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560130

RESUMEN

The permeability and inflammatory tissue reaction to Mucomaix® matrix (MM), a non- cross-linked collagen-based matrix was evaluated in both ex vivo and in vivo settings. Liquid platelet rich fibrin (PRF), a blood concentrate system, was used to assess its capacity to absorb human proteins and interact with blood cells ex vivo. In the in vivo aspect, 12 Wister rats had MM implanted subcutaneously, whereas another 12 rats (control) were sham-operated without biomaterial implantation. On days 3, 15 and 30, explantation was completed (four rats per time-point) to evaluate the tissue reactions to the matrix. Data collected were statistically analyzed using analysis of variance (ANOVA) and Tukey multiple comparisons tests (GraphPad Prism 8). The matrix absorbed the liquid PRF in the ex vivo study. Day 3 post-implantation revealed mild tissue inflammatory reaction with presence of mononuclear cells in the implantation site and on the biomaterial surface (mostly CD68-positive macrophages). The control group at this stage had more mononuclear cells than the test group. From day 15, multinucleated giant cells (MNGCs) were seen in the implantation site and the outer third of the matrix with marked increase on day 30 and spread to the matrix core. The presence of these CD68-positive MNGCs was associated with significant matrix vascularization. The matrix degraded significantly over the study period, but its core was still visible as of day 30 post-implantation. The high permeability and fast degradation properties of MM were highlighted.

3.
J Pathol ; 251(2): 123-134, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32166747

RESUMEN

Spontaneously regressing infantile haemangiomas and aggressive angiosarcomas are vascular tumours with excessive angiogenesis. When analysing haemangiomas and angiosarcomas immunohistochemically with respect to their chaperone profiles we found that angiosarcomas have significantly elevated protein levels of binding immunoglobulin protein (BIP) and PERK with concomitant attenuated IRE1α levels, whereas haemangioma tissue exhibits the same pattern as embryonal skin tissue. We show that BiP is essential for the maintenance of VEGFR2 protein, which is expressed in the endothelium of both tumour types. When studying the effects of BiP, the IRE1α/Xbp1 -, and PERK/ATF4-signalling pathways on the migration and tube-forming potential of endothelial cells, we show that downregulation of BiP, as well as inhibition of the kinase activity of IRE1α, inhibit in vitro angiogenesis. Downregulation of PERK (PKR-like kinase; PKR = protein kinase R) levels promotes Xbp1 splicing in endoplasmic reticulum (ER)-stressed cells, indicating that in angiosarcoma the elevated PERK levels might result in high levels of unspliced Xbp1, which have been reported to promote cell proliferation and increase tumour malignancy. The data presented in this study revealed that in addition to BiP or PERK, the kinase domains of IRE1α and Xbp1 could be potential targets for the development of novel therapeutic approaches for treating angiosarcomas and to control tumour angiogenesis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Endorribonucleasas/metabolismo , Células Endoteliales/enzimología , Proteínas de Choque Térmico/metabolismo , Hemangioma/enzimología , Hemangiosarcoma/enzimología , Neovascularización Patológica , Proteínas Serina-Treonina Quinasas/metabolismo , eIF-2 Quinasa/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas/genética , Células Endoteliales/patología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico/genética , Hemangioma/genética , Hemangioma/patología , Hemangiosarcoma/genética , Hemangiosarcoma/patología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , eIF-2 Quinasa/genética
4.
J Oral Implantol ; 46(3): 190-207, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32068853

RESUMEN

Several different biomaterials are being introduced for clinical applications. However, no current material-specific systematic studies define parameters for evaluating these materials. The aim of this retrospective animal study is to classify biomaterials according to the in vivo induced cellular reaction and outline the clinical consequence of the biomaterial-specific cellular reaction for the regeneration process. A retrospective histologic analysis was performed for 13 polymeric biomaterials and 19 bone substitute materials (BSMs) (of various compositions and origins) that were previously implanted in a standardized subcutaneous model. Semiquantitative analyses were performed at days 3, 15, and 30 after implantation according to a standardized score for the induction of multinucleated giant cells (MNGCs) and vascularization rate. The induced cellular reaction in response to different polymeric materials allowed their classification according to the MNGC score in the following groups: class I induced no MNGCs at any time point, class II induced and maintained a constant number of MNGCs over 30 days, and class III induced MNGCs and provided an increasing number over 30 days. All BSMs induced MNGCs to varying extents. Therefore, the resultant BSM classifications are as follows: class I induced MNGCs with a decreasing number, class II induced and maintained constant MNGCs over 30 days, and class III induced MNGCs with increasing number over 30 days. These observations were mostly related to the biomaterial physicochemical properties and were independent of the biomaterial origin. Consequently, the induction of MNGCs and their increase over 30 days resulted in disintegration of the biomaterial. By contrast, the absence of MNGCs resulted in an integration of the biomaterial within the host tissue. This novel classification provides clinicians a tool to assess the capacity and suitability of biomaterials in the intended clinical indication for bone and soft tissue implantations.


Asunto(s)
Materiales Biocompatibles , Sustitutos de Huesos , Animales , Huesos , Células Gigantes , Estudios Retrospectivos
5.
Int J Mol Sci ; 20(13)2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31284382

RESUMEN

The intestinal microvasculature (iMV) plays multiple pathogenic roles during chronic inflammatory bowel disease (IBD). The iMV acts as a second line of defense and is, among other factors, crucial for the innate immunity in the gut. It is also the therapeutic location in IBD targeting aggravated leukocyte adhesion processes involving ICAM-1 and E-selectin. Specific targeting is stressed via nanoparticulate drug vehicles. Evaluating the iMV in enterocyte barrier models in vitro could shed light on inflammation and barrier-integrity processes during IBD. Therefore, we generated a barrier model by combining the enterocyte cell line Caco-2 with the microvascular endothelial cell line ISO-HAS-1 on opposite sides of a transwell filter-membrane under culture conditions which mimicked the physiological and inflamed conditions of IBD. The IBD model achieved a significant barrier-disruption, demonstrated via transepithelial-electrical resistance (TER), permeability-coefficient (Papp) and increase of sICAM sE-selectin and IL-8. In addition, the impact of a prospective model drug-vehicle (silica nanoparticles, aSNP) on ongoing inflammation was examined. A decrease of sICAM/sE-selectin was observed after aSNP-exposure to the inflamed endothelium. These findings correlated with a decreased secretion of ICAM/E-selectin bearing exosomes/microvesicles, as evaluated via ELISA. Our findings indicate that aSNP treatment of the inflamed endothelium during IBD may hamper exosomal/microvesicular systemic communication.


Asunto(s)
Exosomas/metabolismo , Inflamación/patología , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Células CACO-2 , Selectina E/metabolismo , Impedancia Eléctrica , Exosomas/efectos de los fármacos , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo
6.
Pathol Res Pract ; 215(7): 152396, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30954348

RESUMEN

AIM: Tissue shrinking due to fixation and processing is well known. However, the degree of shrinking varies significantly with the tissue type as well as the processing method and is not well studied in various tissues. In daily pathological routine workflow, histological specimens from frozen and paraffin sections are performed from the same tissue. In the present study we compared the thickness of bronchus walls obtained from paraffin and frozen sections. METHODS: Pig lungs were frozen in ventilated condition in liquid nitrogen and 36 bronchi were isolated after dissection. Frozen sections of 5 µm thickness were performed and the remaining tissue was fixed and embedded in paraffin after fixation in 4% formalin. Frozen and paraffin sections from the same cutting edge were analysed after haematoxylin and eosin staining by measuring the wall thickness of the bronchi using high power fields of 400-fold magnification. In each bronchus 40 measurements were implemented at different wall positions distributed over the entire wall area. Summed up, in each group 1440 wall measurements were performed in total. Statistical analysis was conducted using the Wilcoxon test and t-test as well as Pearson's correlation coefficient with a significance level at P < 0.05. RESULTS: The bronchial wall thickness was significantly (p < 0.001) smaller in frozen sections (median: 0.50 mm; min: 0.37 mm; max: 0.97 mm) compared to paraffin sections (median: 0.58 mm; min: 0.35 mm; max: 1.06 mm). The median difference between paraffin and frozen sections was 0.05 mm (min: -0.11 mm; max: 0.22 mm). The wall thickness ratio of both groups was as follows: frozen/paraffin section = 0.8609, thus yielding a difference between paraffin and frozen of 13.91%. High correlation was found between wall thickness measurements on paraffin and frozen sections (R = 0.87, p < 0.001). CONCLUSIONS: The bronchus wall thickness in the frozen section was 14% reduced compared to the paraffin section. In routine pathology as well as in scientific studies these results are of relevance, as airway wall thickness represents a relevant marker for pathological interpretation, especially using CT image techniques.


Asunto(s)
Bronquios/patología , Secciones por Congelación , Pulmón/patología , Adhesión en Parafina , Manejo de Especímenes/métodos , Animales , Porcinos
7.
Tissue Eng Part C Methods ; 24(11): 659-670, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30358494

RESUMEN

IMPACT STATEMENT: This study evaluated for the first time the composition and bioactivity of platelet-rich fibrin (PRF) produced from small animal blood by reducing the initial blood volume needed for the preparation of PRF from 10 to 3 mL. The results showed that different preparation protocols of PRF produced using 3 mL of animal blood exhibit the same composition, properties, and bioactivity as PRF prepared using 10 mL human blood.


Asunto(s)
Biomarcadores/metabolismo , Plaquetas/metabolismo , Centrifugación/métodos , Leucocitos/metabolismo , Linfocitos/metabolismo , Fibrina Rica en Plaquetas/metabolismo , Animales , Plaquetas/citología , Células Cultivadas , Femenino , Leucocitos/citología , Linfocitos/citología , Ratas , Ratas Wistar
8.
Artículo en Inglés | MEDLINE | ID: mdl-30155464

RESUMEN

The present study evaluated the tissue response toward a resorbable collagen membrane derived from bovine achilles tendon (test group) in comparison to physiological wound healing (control group). After subcutaneous implantation in Wistar rats over 30 days, histochemical and immunohistochemical methods elucidated the cellular inflammatory response, vascularization pattern, membrane protein and cell absorbance capacity. After 30 days, the test-group induced two different inflammatory patterns. On the membrane surface, multinucleated giant cells (MNGCs) were formed after the accumulation of CD-68-positive cells (macrophages), whereas only mononuclear cells (MNCs) were found within the membrane central region. Peri-implant vascularization was significantly enhanced after the formation of MNGCs. No vessels were found within the central region of the membrane. Physiological wound healing revealed no MNGCs at any time point. These dynamic changes in the cellular reaction and vascularization within the test-group are related typical indications of a foreign body reaction. Due to the membrane-specific porosity, mononuclear cells migrated into the central region, and the membrane maintained its integrity over 30 days by showing no breakdown or disintegration. The ex vivo investigation analyzed the interaction between the membrane and a blood concentrate system, liquid platelet-rich fibrin (liquid PRF), derived from human peripheral blood and consisting of platelets, leukocytes and fibrin. PRF penetrated the membrane after just 15 min. The data question the role of biomaterial-induced MNGCs as a pathological reaction and whether this is acceptable to trigger vascularization or should be considered as an adverse reaction. Therefore, further pre-clinical and clinical studies are needed to identify the types of MNGCs that are induced by clinically approved biomaterials.

9.
Tissue Eng Part C Methods ; 24(9): 495-503, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30101647

RESUMEN

The development of an in vitro model resembling the alveolar-capillary barrier might be a highly beneficial tool to study lung physiology as well as the immune response of the lung to infection or after exposure to nanoparticles. This study is based on an in vitro alveolar barrier developed on a basement membrane mimic, composed of ultrathin nanofiber meshes generated via electrospinning using bioresorbable poly(ɛ-caprolactone). As cellular components, NCI H441, resembling the alveolar epithelial cells, and ISO-HAS-1, an endothelial cell line, were used to perform bipolar coculture experiments for a total cultivation period of 14 days. In addition to immunohistochemical and immunofluorescent studies, transepithelial electrical resistance (TER) and transport capabilities of the in vitro model system were investigated. Alveolar barrier function could be clearly determined for the postulated bipolar coculture system on the basement membrane mimic, since TER increased during the course of bipolar cultivation. Furthermore, to gain first insights into possible lung inflammatory reactions in vitro, this coculture model was further expanded by a human leukemia monocyte cell line (THP-1). This triple-culture system was able to maintain adequately the barrier properties of the bipolar coculture, thus making this in vitro model consisting of epithelial, endothelial, and immune cells on a basement membrane mimic a promising basis for further studies in tissue engineering.


Asunto(s)
Membrana Basal/metabolismo , Capilares/metabolismo , Técnicas de Cocultivo/métodos , Alveolos Pulmonares/irrigación sanguínea , Línea Celular , Forma de la Célula , Supervivencia Celular , Humanos , Modelos Biológicos
10.
J Tissue Eng Regen Med ; 12(2): e1221-e1236, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28715156

RESUMEN

Repair and regeneration of critical-sized bone defects remain a major challenge in orthopaedic and craniomaxillofacial surgery. Until now, attempts to bioengineer bone tissue have been hindered by the inability to establish proper angiogenesis and osteogenesis in the tissue construct. In the present study, we established a novel triple cell co-culture model consisting of osteoblasts, endothelial cells, and neutrophils and conducted a systematic investigation of the effects of neutrophils on angiogenesis and osteogenesis. Neutrophils significantly increased angiogenesis in the tissue construct, evidenced by the formation of microvessel-like structures with an extensive lattice-like, stable tubular network in the co-culture model. Moreover, neutrophils significantly induced the expression of pro-angiogenic markers, such as VEGF-A, CD34, EGF, and FGF-2 in a dose- and time-dependent manner. Subsequently, PCR arrays corroborated that neutrophils upregulate the important angiogenic markers and MMPs. Moreover, neutrophils also enhanced osteogenic markers, such as ALP, OCN, OPN, and COL-1 compared with the controls. As shown by the osteogenic gene arrays, neutrophils significantly regulated major osteogenic markers such as BMP2, BMP3, BMP4, BMP5, TGF-ß2, RUNX2, and ECM proteins. Significantly higher mineralization was observed in triple cell co-culture compared with controls. Foregoing data indicate that the triple cell co-culture model can be used to stimulate the growth of microvasculature within a bone bioengineering construct to improve cell viability. Neutrophil-mediated enhancement of angiogenesis and osteogenesis could be a viable, clinically relevant tissue engineering strategy to obtain optimal bone growth in defect sites, in the field of oral and maxillofacial surgery.


Asunto(s)
Técnicas de Cocultivo/métodos , Células Endoteliales de la Vena Umbilical Humana/citología , Neovascularización Fisiológica , Neutrófilos/citología , Osteoblastos/citología , Osteogénesis , Adulto , Biomarcadores/metabolismo , Matriz Ósea/metabolismo , Calcificación Fisiológica , Forma de la Célula , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neovascularización Fisiológica/genética , Neutrófilos/metabolismo , Osteogénesis/genética , Factores de Tiempo , Migración Transendotelial y Transepitelial , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto Joven
11.
Clin Oral Investig ; 22(4): 1851-1863, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29209937

RESUMEN

OBJECTIVES: This study examines the permeability and barrier capacity of a sugar cross-linked resorbable collagen membrane ex vivo and in vivo. MATERIALS AND METHODS: In an ex vivo study, injectable platelet-rich fibrin (i-PRF), a peripheral blood-derived human leukocyte-and-platelet-rich plasma was used to analyze membrane permeability. in vivo subcutaneous implantation in Wistar rats (n = 4 per time point and group) was used to investigate the barrier capacity of the membrane. The induced in vivo cellular reaction was evaluated at 3, 15, and 30 days and compared to sham OP (control) without biomaterial using histological, immunohistochemical, and histomorphometric methods. RESULTS: Ex vivo, the membrane was impenetrable to leukocytes, platelets, and fibrin from peripheral human blood concentrate (PRF). In vivo, the membrane maintained its structure and remained impervious to cells, connective tissue, and vessels over 30 days. CD-68-positive cell (macrophage) numbers significantly decreased from 3 to 15 days, while from day 15 onwards, the number of multinucleated giant cells (MNGCs) increased significantly. Correspondingly, a rise in implantation bed vascularization from 15 to 30 days was observed. However, no signs of degradation or material breakdown were observed at any time point. CONCLUSION: Ex vivo and in vivo results showed material impermeability to cellular infiltration of human and murine cells, which highlights the membrane capacity to serve as a barrier over 30 days. However, whether the induced MNGCs will lead to material degradation or encapsulation over the long term requires further investigation. CLINICAL RELEVANCE: The data presented are of great clinical interest, as they contribute to the ongoing discussion concerning to what extent an implanted material should be integrated versus serving only as a barrier membrane.


Asunto(s)
Implantes Absorbibles , Materiales Biocompatibles/química , Colágeno/química , Fibrina Rica en Plaquetas , Plasma Rico en Plaquetas , Azúcares/química , Adolescente , Adulto , Animales , Células Gigantes , Regeneración Tisular Dirigida/instrumentación , Voluntarios Sanos , Humanos , Técnicas para Inmunoenzimas , Ensayo de Materiales , Membranas Artificiales , Persona de Mediana Edad , Ratas , Ratas Wistar , Propiedades de Superficie
12.
J Mater Sci Mater Med ; 28(12): 188, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29071440

RESUMEN

Platelet rich fibrin (PRF) is a blood concentrate system obtained by centrifugation of peripheral blood. First PRF matrices exhibited solid fibrin scaffold, more recently liquid PRF-based matrix was developed by reducing the relative centrifugation force and time. The aim of this study was to systematically evaluate the influence of RCF (relative centrifugal force) on cell types and growth factor release within injectable PRF- in the range of 60-966 g using consistent centrifugation time. Numbers of cells was analyzed using automated cell counting (platelets, leukocytes, neutrophils, lymphocytes and monocytes) and histomorphometrically (CD 61, CD- 45, CD-15+, CD-68+, CD-3+ and CD-20). ELISA was utilized to quantify the concentration of growth factors and cytokines including PDGF-BB, TGF-ß1, EGF, VEGF and MMP-9. Leukocytes, neutrophils, monocytes and lymphocytes had significantly higher total cell numbers using lower RCF. Whereas, platelets in the low and medium RCF ranges both demonstrated significantly higher values when compared to the high RCF group. Histomorphometrical analysis showed a significantly high number of CD61+, CD-45+ and CD-15+ cells in the low RCF group whereas CD-68+, CD-3+ and CD-20+ demonstrated no statistically significant differences between all groups. Total growth factor release of PDGF-BB, TGF-ß1 and EGF had similar values using low and medium RCF, which were both significantly higher than those in the high RCF group. VEGF and MMP-9 were significantly higher in the low RCF group compared to high RCF. These findings support the LSCC (low speed centrifugation concept), which confirms that improved PRF-based matrices may be generated through RCF reduction. The enhanced regenerative potential of PRF-based matrices makes them a potential source to serve as a natural drug delivery system. However, further pre-clinical and clinical studies are required to evaluate the regeneration capacity of this system.


Asunto(s)
Centrifugación/métodos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Fibrina Rica en Plaquetas/citología , Fibrina Rica en Plaquetas/fisiología , Adulto , Sustancias Antielectricidad Estática , Citocinas , Humanos , Leucocitos , Persona de Mediana Edad , Adulto Joven
13.
Clin Oral Investig ; 21(4): 1103-1111, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27306889

RESUMEN

OBJECTIVES: Attached peri-implant gingiva has proven to have an influence on the long-term stability of dental implants. In patients with head and neck cancer, a functional peri-implant gingiva is even more of critical importance. The aim of the presented prospective study was to investigate a three-dimensional xenogeneic collagen matrix for augmentation around dental implants in patients with former head and neck cancer. MATERIAL AND METHODS: Eight patients presenting with insufficient peri-implant gingiva underwent vestibuloplasty on 51 implants using a xenogeneic collagen matrix. The clinical performance and the shrinking tendency of the matrix were analyzed in a cohort study. Furthermore, eight biopsies from the augmented regions were examined histologically to determine the biomaterial-related tissue reaction. RESULTS: Initially after vestibuloplasty, a mean width of attached gingiva of 4.4 ± 0.94 mm could be achieved. At clinical follow up investigation 6 months after vestibuloplasty, a mean width of 3.9 ± 0.65 mm attached peri-implant gingiva with a mean shrinking tendency of 14 % could be detected. Histological analysis of the biopsies revealed a well integrated collagen22 matrix covered with epithelium. Within the compact layer, mononuclear cells were observed only, while the spongious layer was infiltrated with a cell-rich connective tissue. CONCLUSION: Within its limits, the presented study revealed that the investigated collagen matrix is suitable to enlarge the peri-implant attached gingiva in head and neck cancer patients without adverse reactions or a multinucleated giant cell-triggered tissue reaction. CLINICAL RELEVANCE: The application of the investigated three-dimensional collagen matrix in vestibuloplasty achieved a sufficient amount of peri-implant attached gingiva in head and neck cancer patients. The favorable tissue reaction and the low shrinking tendency make the collagen matrix a promising alternative to autologous tissue grafts.


Asunto(s)
Colágeno/uso terapéutico , Implantes Dentales , Encía/patología , Encía/cirugía , Neoplasias de Cabeza y Cuello/patología , Vestibuloplastia/métodos , Anciano , Femenino , Alemania , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
14.
J Tissue Eng Regen Med ; 11(4): 1285-1297, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-26078119

RESUMEN

Current pulmonary research underlines the relevance of the alveolar macrophage (AM) integrated in multicellular co-culture-systems of the respiratory tract to unravel, for example, the mechanisms of tissue regeneration. AMs demonstrate a specific functionality, as they inhabit a unique microenvironment with high oxygen levels and exposure to external hazards. Healthy AMs display an anti-inflammatory phenotype, prevent hypersensitivity to normally innocuous contaminants and maintain tissue homeostasis in the alveolus. To mirror the actual physiological function of the AM, we developed three different polarized [classically activated (M1) and alternatively activated (M2wh , wound-healing; M2reg , regulatory)] macrophage models using a mixture of differentiation mediators, as described in the current literature. To test their immunological impact, these distinct macrophage phenotypes were seeded on to the epithelial layer of an established in vitro air-blood barrier co-culture, consisting of alveolar epithelial cells A549 or H441 and microvascular endothelial cells ISO-HAS-1 on the opposite side of a Transwell filter-membrane. IL-8 and sICAM release were measured as functionality parameters after LPS challenge. The M1 model itself already provoked a severe inflammatory-like response of the air-blood barrier co-culture, thus demonstrating its potential as a useful in vitro model for inflammatory lung diseases. The two M2 models represent a 'non-inflammatory' phenotype but still showed the ability to trigger inflammation following LPS challenge. Hence, the latter could be used to establish a quiescent, physiological in vitro air-blood model. Thus, the more complex differentiation protocol developed in the present study provides a responsive in vitro triple-culture model of the air-blood-barrier that mimics AM features as they occur in vivo. © 2015 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons, Ltd.


Asunto(s)
Barrera Alveolocapilar/citología , Técnicas de Cultivo de Célula/métodos , Macrófagos/citología , Biomarcadores/metabolismo , Línea Celular , Forma de la Célula , Técnicas de Cocultivo , Impedancia Eléctrica , Ensayo de Inmunoadsorción Enzimática , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-8/metabolismo , Macrófagos/metabolismo , Fenotipo , Solubilidad
15.
Microvasc Res ; 111: 1-11, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27988246

RESUMEN

We previously demonstrated that the co-cultivation of endothelial cells with neural cells resulted in an improved integrity of the in vitro blood-brain barrier (BBB), and that this model could be useful to evaluate the transport properties of potential central nervous system disease drugs through the microvascular brain endothelial. In this study we have used real-time PCR, fluorescent microscopy, protein arrays and enzyme-linked immunosorbent assays to determine which neural- and endothelial cell-derived factors are produced in the co-culture and improve the integrity of the BBB. In addition, a further improvement of the BBB integrity was achieved by adjusting serum concentrations and growth factors or by the addition of brain pericytes. Under specific conditions expression of angiogenic, angiostatic and neurotrophic factors such as endostatin, pigment epithelium derived factor (PEDF/serpins-F1), tissue inhibitor of metalloproteinases (TIMP-1), and vascular endothelial cell growth factor (VEGF) closely mimicked the in vivo situation. Freeze-fracture analysis of these cultures demonstrated the quality and organization of the endothelial tight junction structures and their association to the two different lipidic leaflets of the membrane. Finally, a multi-cell culture model of the BBB with a transendothelial electrical resistance up to 371 (±15) Ω×cm2 was developed, which may be useful for preliminary screening of drug transport across the BBB and to evaluate cellular crosstalk of cells involved in the neurovascular unit.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Comunicación Celular , Células Endoteliales/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Uniones Estrechas/metabolismo , Animales , Barrera Hematoencefálica/citología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Técnicas de Cocultivo , Impedancia Eléctrica , Humanos , Acoplamiento Neurovascular , Fenotipo , Transducción de Señal , Sus scrofa , Proteínas de Uniones Estrechas/metabolismo
16.
J Mater Sci Mater Med ; 28(1): 15, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27995493

RESUMEN

In preventing postoperative adhesion formation the optimal barrier material has still not been found. It is therefore imperative to assess the biocompatibility of potential barrier devices. Macrophages play a decisive role in the regulation of wound healing, tissue regeneration and foreign body reaction. Since the number of CD68-positive macrophages represents an important parameter within biomaterial testing, in the present study it was analysed whether a correlation exists between the total number of CD68-positive macrophages and the extent of fibrosis or inflammation in peritoneal adhesion prevention using biomaterials. After standardized peritoneal wounding, Wistar rats were treated with five adhesion barriers or remained untreated as a control. After 14 days, animals were sacrificed and the treated areas were evaluated histomorphologically and immunohistologically. A heterogeneous pattern of macrophage count in relation to fibrosis or inflammation was found. While some groups described a moderate macrophage infiltration without fibrosis, others showed similar numbers of macrophages, but accompanied by moderate fibrosis. Moreover, a minimal number of macrophages was associated with minimal fibrosis. Mild inflammation was seen both with minimal and moderate macrophage infiltration. Altogether, no correlation could be established between the tissue response and the count of CD68-positive macrophages. With a view to macrophage heterogeneity further studies are required to determine the different macrophage subpopulations and clarify the role of these in the tissue responses to barrier materials.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Materiales Biocompatibles/química , Macrófagos/metabolismo , Animales , Adhesión Celular , Femenino , Fibrosis/patología , Reacción a Cuerpo Extraño , Inflamación , Macrófagos/citología , Macrófagos/efectos de los fármacos , Peritoneo/patología , Ratas , Ratas Wistar , Regeneración , Adherencias Tisulares/patología , Cicatrización de Heridas/fisiología
17.
J Tissue Eng Regen Med ; 11(3): 637-648, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-25370800

RESUMEN

Limitations of current treatments for intervertebral disc (IVD) degeneration have promoted interest in the development of tissue-engineering approaches. Injectable hydrogels loaded with cells can be used as a substitute material for the inner IVD part, the nucleus pulposus (NP), and provide an opportunity for minimally invasive treatment of IVD degeneration. The NP is populated by chondrocyte-like cells; therefore, chondrocytes and mesenchymal stem cells (MSCs), stimulated to differentiate along the chondrogenic lineage, could be used to promote NP regeneration. In this study, the in vitro and in vivo response of human bone marrow-derived MSCs and nasal chondrocytes (NCs) to modified gellan gum-based hydrogels was investigated. Both ionic- (iGG-MA) and photo-crosslinked (phGG-MA) methacrylated gellan gum hydrogels show no cytotoxicity in extraction assays with MSCs and NCs. Furthermore, the materials do not induce pro-inflammatory responses in endothelial cells. Moreover, MSCs and NCs can be encapsulated into the hydrogels and remain viable for at least 2 weeks, although apoptosis is observed in phGG-MA. Importantly, encapsulated MSCs and NCs show signs of in vivo chondrogenesis in a subcutaneous implantation of iGG-MA. Altogether, the data endorse the potential use of modified gellan gum-based hydrogel as a suitable material in NP tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.


Asunto(s)
Células Inmovilizadas/citología , Hidrogeles/farmacología , Metacrilatos/farmacología , Núcleo Pulposo/fisiología , Polisacáridos Bacterianos/farmacología , Regeneración/efectos de los fármacos , Animales , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Células Inmovilizadas/efectos de los fármacos , Células Inmovilizadas/metabolismo , Condrogénesis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Etiquetado Corte-Fin in Situ , Inflamación/patología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/ultraestructura , Ratones SCID , Núcleo Pulposo/efectos de los fármacos , Tejido Subcutáneo/efectos de los fármacos
18.
Nanomedicine ; 13(3): 1289-1300, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27884636

RESUMEN

Targeted delivery of drugs across endothelial barriers remains a formidable challenge, especially in the case of the brain, where the blood-brain barrier severely limits entry of drugs into the central nervous system. Nanoparticle-mediated transport of peptide/protein-based drugs across endothelial barriers shows great potential as a therapeutic strategy in a wide variety of diseases. Functionalizing nanoparticles with peptides allows for more efficient targeting to specific organs. We have evaluated the hemocompatibilty, cytotoxicity, endothelial uptake, efficacy of delivery and safety of liposome, hyperbranched polyester, poly(glycidol) and acrylamide-based nanoparticles functionalized with peptides targeting brain endothelial receptors, in vitro and in vivo. We used an ELISA-based method for the detection of nanoparticles in biological fluids, investigating the blood clearance rate and in vivo biodistribution of labeled nanoparticles in the brain after intravenous injection in Wistar rats. Herein, we provide a detailed report of in vitro and in vivo observations.


Asunto(s)
Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos , Liposomas/metabolismo , Nanopartículas/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Línea Celular , Portadores de Fármacos , Humanos , Liposomas/análisis , Liposomas/farmacocinética , Masculino , Nanopartículas/análisis , Péptidos/análisis , Péptidos/farmacocinética , Ratas Wistar , Distribución Tisular
19.
Nanotoxicology ; 10(9): 1341-50, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27492761

RESUMEN

A library of polymer-coated gold nanoparticles (AuNPs) differing in size and surface modifications was examined for uptake and induction of cellular stress responses in the endoplasmic reticulum (ER stress) in human brain endothelial cells (hCMEC/D3). ER stress is known to affect the physiology of endothelial cells (ECs) and may lead to inflammation or apoptosis. Thus, even if applied at non-cytotoxic concentrations ER stress caused by nanoparticles should be prevented to reduce the risk of vascular diseases and negative effects on the integrity of barriers (e.g. blood-brain barrier). We exposed hCMEC/D3 to twelve different AuNPs (three sizes: 18, 35, and 65 nm, each with four surface-modifications) for various times and evaluated their effects on cytotoxicity, proinflammatory mediators, barrier functions and factors involved in ER stress. We demonstrated a time-dependent uptake of all AuNPs and no cytotoxicity for up to 72 h of exposure. Exposure to certain AuNPs resulted in a time-dependent increase in the proinflammatory markers IL-8, MCP-1, sVCAM, sICAM. However, none of the AuNPs induced an increase in expression of the chaperones and stress sensor proteins BiP and GRP94, respectively, or the transcription factors ATF4 and ATF6. Furthermore, no upregulation of the UPR stress sensor receptor PERK, no active splicing product of the transcription factor XBP1 and no upregulation of the transcription factor CHOP were detectable. In conclusion, the results of the present study indicate that effects of different-sized gold nanoparticles modified with various polymers were not related to the induction of ER stress in brain microvascular endothelial cells or led to apoptosis.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Oro/toxicidad , Nanopartículas del Metal/toxicidad , Polímeros/química , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células Endoteliales/metabolismo , Oro/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Interleucina-8/metabolismo , Proteínas de la Membrana/metabolismo , Nanopartículas del Metal/química , Tamaño de la Partícula , Factores de Riesgo , Factor de Transcripción CHOP/metabolismo
20.
ACS Appl Mater Interfaces ; 8(34): 22025-31, 2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27494044

RESUMEN

With an aging population and the consequent increasing use of medical implants, managing the possible infections arising from implant surgery remains a global challenge. Here, we demonstrate for the first time that a precise nanotopology provides an effective intervention in bacterial cocolonization enabling the proliferation of eukaryotic cells on a substratum surface, preinfected by both live Gram-negative, Pseudomonas aeruginosa, and Gram-positive, Staphylococcus aureus, pathogenic bacteria. The topology of the model black silicon (bSi) substratum not only favors the proliferation of eukaryotic cells but is biocompatible, not triggering an inflammatory response in the host. The attachment behavior and development of filopodia when COS-7 fibroblast cells are placed in contact with the bSi surface are demonstrated in the dynamic study, which is based on the use of real-time sequential confocal imaging. Bactericidal nanotopology may enhance the prospect for further development of inherently responsive antibacterial nanomaterials for bionic applications such as prosthetics and implants.


Asunto(s)
Células Eucariotas , Antibacterianos , Nanoestructuras , Pseudomonas aeruginosa , Staphylococcus aureus , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...